OVERVIEW
The Master of Applied Statistics (M.A.S.) trains you in the practical application of statistics, focusing on methods and computational aspects. Compared to other degrees in the field, our M.A.S. uniquely prepares you to derive meaning from data and offers instruction in a wide array of topics. The program is taught by the same faculty and features the same innovative content as the on-campus Master of Applied Statistics program, but offers the flexibility you need from an online degree. Upon completion of the program, you will possess the knowledge and skills needed to start working in industry, government, or academia as a practicing statistician – a growing, in-demand profession.

New students begin the degree during the summer term with math and computing skills courses. These courses review foundational skills and present them in a statistical context to assure you are prepared for coursework within the degree. Subsequent courses are offered in eight-week subterms and span topics from survey statistics and regression modeling to Bayesian statistics and computational methods. The online statistics degree program concludes with a six-week capstone consulting course, where you will enhance your communication skills and complete a project that allows you to apply concepts learned during your course of study while working with an actual client.

The Bureau of Labor Statistics projects increasing demand for statisticians. Our Master of Applied Statistics will quickly prepare students to be competent practitioners of statistics, positioning them for a rewarding career in a growing job market.

Mary Meyer
Associate Statistics professor

DEGREE AWARDED
Master of Applied Statistics in Applied Statistics

OFFERED BY
Department of Statistics

LEARN MORE
online.colostate.edu/degrees/applied-statistics

DELIVERY
Online

CREDITS
31 credits

TUITION
$720 per credit; financial aid is available

TIME FRAME
The degree begins during the summer term and can be completed in one year. Time frame may vary based on intensity of study and previous coursework.
CURRICULUM

Subterm 1
Subterm 1 is ten weeks, beginning in mid-June. These noncredit courses are required of all students.
- GSLL 3095 – Math Skills for Statistical Analysis (0 cr.)
- GSLL 3096 – Computing Skills for Statistical Analysis (0 cr.)

Subterm 2
Subterm 2 is the first eight weeks of the Fall term beginning in August and ending in mid-October.
- STAA 551 – Regression Models and Applications (2 cr.)
- STAA 553 – Experimental Design (2 cr.)
- STAA 561 – Probability with Applications (2 cr.)
- STAA 565 – Quantitative Reasoning (1 cr.)
- STAA 573 – Analysis of Time Series (2 cr.)

Subterm 3
Subterm 3 is the last eight weeks of Fall term, beginning in mid-October and ending in mid-December.
- STAA 552 – Generalized Regression Models (2 cr.)
- STAA 562 – Mathematical Statistics with Applications (2 cr.)
- STAA 567 – Methods in Simulation and Computation (1 cr.)
- STAA 572 – Nonparametric Methods (2 cr.)

Subterm 4
Subterm 4 is the first eight weeks of Spring term, beginning in mid-January and ending in mid-March.
- GSLL 3096 – Computing Skills for Statistical Analysis (0 cr.)
- STAA 551 – Regression Models and Applications (2 cr.)
- STAA 553 – Experimental Design (2 cr.)
- STAA 566 – Computational and Graphical Statistics (1 cr.)
- STAA 571 – Survey Statistics (2 cr.)
- STAA 575 – Applied Bayesian Statistics (2 cr.)

Subterm 5
Subterm 5 is the last eight weeks of Spring term, beginning in mid-March and ending in early May.
- STAT 500 – Statistical Computer Packages (1 cr.)
- STAA 554 – Mixed Models (2 cr.)
- STAA 568 – Topics in Industrial and Organizational Stats (1 cr.)
- STAA 574 – Multivariate Analysis (2 cr.)
- STAA 576 – Methods in Environmental Statistics (2 cr.)
- STAA 577 – Statistical Learning and Data Mining (2 cr.)

Subterm 6
Subterm 6 is the first six weeks of Summer term, beginning in mid-May and ending in late June.
- STAA 556 – Statistical Consulting (3 cr.)

MINIMUM ADMISSION REQUIREMENTS
- A four-year bachelor’s degree from a regionally-accredited university
- Three semesters of calculus (or at least through multiple integration)
- A course in linear algebra
- At least one undergraduate-level statistics course
- Math Entrance Exam scores or GRE scores

COMPLETION REQUIREMENTS
- 31 credits
- A minimum of 24 credits must be earned through CSU, 21 of which must be earned after admission to Graduate School